15 research outputs found

    Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

    Get PDF
    For an nn-variate order-dd tensor AA, define Amax⁑:=sup⁑βˆ₯xβˆ₯2=1⟨A,xβŠ—d⟩ A_{\max} := \sup_{\| x \|_2 = 1} \langle A , x^{\otimes d} \rangle to be the maximum value taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d Β±1\pm 1 entries, Amax⁑≲nβ‹…dβ‹…log⁑dA_{\max} \lesssim \sqrt{n\cdot d\cdot\log d} w.h.p. We study the problem of efficiently certifying upper bounds on Amax⁑A_{\max} via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include: - When AA is a random order-qq tensor, we prove that qq levels of SoS certifies an upper bound BB on Amax⁑A_{\max} that satisfies B    ≀  Amax⁑⋅(nq 1βˆ’o(1))q/4βˆ’1/2w.h.p. B ~~~~\leq~~ A_{\max} \cdot \biggl(\frac{n}{q^{\,1-o(1)}}\biggr)^{q/4-1/2} \quad \text{w.h.p.} Our upper bound improves a result of Montanari and Richard (NIPS 2014) when qq is large. - We show the above bound is the best possible up to lower order terms, namely the optimum of the level-qq SoS relaxation is at least Amax⁑⋅(nq 1+o(1))q/4βˆ’1/2Β . A_{\max} \cdot \biggl(\frac{n}{q^{\,1+o(1)}}\biggr)^{q/4-1/2} \ . - When AA is a random order-dd tensor, we prove that qq levels of SoS certifies an upper bound BB on Amax⁑A_{\max} that satisfies B  ≀  Amax⁑⋅(O~(n)q)d/4βˆ’1/2w.h.p. B ~~\leq ~~ A_{\max} \cdot \biggl(\frac{\widetilde{O}(n)}{q}\biggr)^{d/4 - 1/2} \quad \text{w.h.p.} For growing qq, this improves upon the bound certified by constant levels of SoS. This answers in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who established the tight characterization for constant levels of SoS

    Van der knaap disease: A case report

    Get PDF
    Van der Knaap disease or megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare autosomal recessive degenerative disorder characterized by megalencephaly, cerebral leukoencephalopathy, and motor deterioration. Most cases reported with this disease in India belong to the Agarwal Community with Consanguinity. Here, we report the case of a 12-year-old boy belonging to this ethnic background presented with a history of delayed motor milestones, ataxia, poor scholastic performance, and seizures. MLC has a benign course and better outcome with life expectancy up to 3rd–4th decade of life. MLC should be included in differentials of macrocephaly and leukoencephalopathy with characteristic magnetic resonance imaging findings. A precise diagnosis helps for better management and to prognosticate its benign course

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem

    Get PDF

    Separating a Voronoi Diagram via Local Search

    Get PDF
    Given a set P of n points in R^dwe show how to insert a set Z of O(n^(1-1/d)) additional points, such that P can be broken into two sets P1 and P2of roughly equal size, such that in the Voronoi diagram V(P u Z), the cells of P1 do not touch the cells of P2; that is, Z separates P1 from P2 in the Voronoi diagram (and also in the dual Delaunay triangulation). In addition, given such a partition (P1,P2) of Pwe present an approximation algorithm to compute a minimum size separator realizing this partition. We also present a simple local search algorithm that is a PTAS for approximating the optimal Voronoi partition

    Extending Parikh's Theorem to Weighted and Probabilistic Context-Free Grammars

    Get PDF
    We prove an analog of Parikh's theorem for weighted context-free grammars over commutative, idempotent semirings, and exhibit a stochastic context-free grammar with behavior that cannot be realized by any stochastic right-linear context-free grammar. Finally, we show that every unary stochastic context-free grammar with polynomially-bounded ambiguity has an equivalent stochastic right-linear context-free grammar.Ope
    corecore